
International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

COMPARATIVE PERFORMANCE AND ANALYSIS

OF SOME IMPROVED ROUND ROBIN CPU

SCHEDULING
K. I Musa, K. E Lasisi, J.A Gokir

Abstract

Some researchers in recent times still compare their proposed algorithms with the famous algorithm such as FCFS, SJF RR when there

are already modified in the research domain. Thus, the paper seeks to find whether any latest improvement implies improvement on

the improved, assuming that all immediate preceding (improved) algorithms have been studied, therefore a need to establish a research

ladder in the field of Round Robin improvement to come out with the most optimal of all improved algorithms for implementation in

time sharing and real time operating system with time. For this purpose, the researchers randomly selects the algorithm (DABRR)

proposed in 2015 and two (DTSRR and RMRR) of 2016, studied the algorithms, implement the algorithms using VB 2013 and their

analyzed percentage result presented in graphs with the aid of spreadsheet. The result showed that DABRR proposed in 2015

performs more optimal in comparison to those (DTSRR and RMRR) of 2016 since the analyzed result proofs that DABRR improves

traditional RR by 37.13%, 36.75% and 98.49%, DTSRR improves traditional RR by 7.06%, 7.04%, 86.36% and RMRR improves

traditional RR by17.04%, 12.75% and 97.65%, each with respect to AWT, ATAT and NCS respectively. Thus, the research proofs

that not all latest proposal are actual improvement on the previous proposals therefore the recommendation that researchers should

always compare their new algorithms with already improved algorithms not to meander within by rewinding back to the famous

algorithms. Considering hierarchical (ladder) performance classifications of improvements on RR algorithm, DABRR tops the RMRR

followed by DTSRR and the RR

Index Terms: Comparatives Performance, Comparative Analysis, Round Robin CPU Scheduling, Analysis of Improved Round Robin

——————————  ——————————

1. INTRODUCTION

Considering the fact that the number of processes loaded

into computer memory ready for execution at a time may

by more than the number of processors in the system where

the processor is left with a diverse choice of which process

be executed first?, for how long?, which next?, what are the

subsequent order of executions? What is the turn for each

process? However, with the aid of a scheduling concept all

the above questions were addressed. Based on this concept

[1] affirmed that in a single processor system, only one

process can be allowed to run at a time. Similarly [2] stated

that only one process runs a time in uni-processor system

and any other must wait until CPU is free and can be

allowed. In a case where the number of processor is more

than or equal to number of programs loaded, still there are

choices of which processor executes which program or

which processor be kept busy and which be kept idle must

be made [3]. Therefore, these called for a mechanism or

program with a conflict settling policy that controls these

choices, order of execution and execution duration. A

program that settles conflicts among processes by

determining their order and duration of execution can be

referred to as a scheduler and the process of performing the

function is named scheduling. Thus the definition with

respect to CPU by [4] that CPU scheduling is a decision of

allocating a single resource among multiple clients, the

order of allocation and durations. In order to be convinced

that this scheduling is not just common with CPU, [5] listed

areas where scheduling are evidently applied in real life as

road, railway and air traffic control system and league

games.

This scheduling concept was implemented via algorithm

called scheduling algorithm, thus the following examples:

First Come First Serve (FCFS), Shortest Job First (SJF), and

1494

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Round Robin (RR). These algorithms were designed based

on suitability of implementations compatible with the

behaviour of the system that achieved its objectives. It is in

this light that [6] listed algorithms with their suitable

respective areas of application as: FCFS and SJF are suitable

for batch system and non interactive while RR suitable for

time-shared and interactive systems. Each of the algorithms

is expected to exhibit a good quality of maintaining a

minimum turnaround time, waiting time, response time,

context switch and maximum throughput and CPU

utilization irrespective of its system of application [1] and

[7]

In a quest to realized algorithms with optimal quality with

respect to the above listed metrics, researchers such as [1] ,

[4], [5], [7] etc are always on their feet to see to the optimal

performance of RR algorithms. However, with the calibre of

theses researchers, one can assumed that RR algorithm

should be at the optimal level not deserving improvement

any longer but it seems that most of the researchers with

respect to improving RR algorithms worked in parallel

mode without harmonization by failure to compare their

proposed algorithms performance with respect to the

preceded improved RR, instead compared theirs with the

famous RR, FCFS and SJF, however, only few were

harmonized. This was evident in the researches of [8], [9],

[10] and [11].This was also observed by [12] that rarely have

larger number of improved RR algorithms compared with

those just been improved by other researchers. Worthy of

commendation for comparing the performance of their

proposed RR algorithms with previous improvement were

[13], [14], [15], [1] and [16]

Nevertheless, a step in the ladder of RR optimization

should be the order of the day by comparing the

performance of the existing un-compared algorithms to

ascertain their performance before thinking of proposing

new and the most optimized of all otherwise on may be

proposed an algorithm which may perform less than some

that had earlier been proposed. Some of the researchers

who strictly compared algorithms proposed by others

without proposing theirs were [17]), [18], [19] and [12].

It is in this light that this paper compares the analyzed

performance of three improved RR algorithms to confirm

the optimality performance between precedes and succeeds

algorithms. Therefore, the researchers considered the

DABRR of [14], RMRR of [11] and DTSRR of [15]. The

famous RR was used in the research as a standard point for

comparing the improved (optimized) RRs. These

algorithms were randomly selected among the proposed

algorithms in recent times (year 2015-2016). Critical to RR

operation and optimization are the TQ computation model,

TQ regulation and allocation of resource duration, process

arrangement and execution order. The application of the

parameters can be seen in the considered algorithms

reviewed below.

1.1 DABRR Algorithm

[14] In a research titled An Optimized Round Robin CPU

Scheduling Algorithm with Dynamic Time Quantum

proposed a dynamic Average Burst Round Robin with

TQ =
∑ ����� �����

�
 implemented execution order in cases. Case

I sort processes in increasing order of burst times, Case ii

sort processes in decreasing order of burst times and case

iii execute processes in order of arrival FCFS out of all, case

i proofs to be the most optimal. DABRR maintained

maximum of one TQ to each process at a time in a round of

execution after which the processor is relocated to the next

process in the ready queue. The DABRR was implemented

alongside with RR, DQRRRR, IRRVQ, SARR, RP_5, and

MRR for comparison and analysis.

1.2 RMRR

[11] Proposed A Revamped Mean Round Robin (RMRR)

CPU Scheduling Algorithm with TQ computation

model TQ =
∑ ����� �����

�
 that execute processes in FCFS

order. RMRR regulates its TQ for allocation and de-

allocation of resources as thus, If RBT<TQ then execute the

process to completion else executed one TQ period and

allocate the processor to the next process on the ready

queue. RMRR was implemented alongside with RR, FCFS,

& SJF for comparative performance

1.3 DTSRR Algorithm

[15] Proposed a Dynamic Time Slice Round Robin (DTSRR)

Scheduling Algorithm With Unknown Burst Time which

execute processes in order of their arrival times (FCFS).

First of all, TQ is arbitrary Selected and subsequently

1495

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

updated using number of processes that finishes in a round

of execution as thus, If Finish<1 then TQ=TQ*2 else if

finish>2 thenTQ =
��

�
. If number of processes that Finish in a

round of execution is less than one then increment the TQ

by TQ=TQ*2 else if number of processes that finishes in a

round of execution is greater than two then decrement the

TQ by TQ =
��

�
 else maintain the TQ. The DTSRR was

implemented with RR and Optimized RR for performance

comparison.

2 ILLUSTRATIVE EXAMPLE

For the purpose of evaluation, the equation used in

obtaining waiting time and average waiting time for each

scheduling algorithm are giving as follows:

The equation used in obtaining turnaround time and

average turnaround time for each scheduling algorithm is

giving as follows:

Turnaround time

 (TAT)=Finished time (FT)-Arrival time (AT)

TAT=FT-AT------i

Average turnaround time

(ATAT)=
��� �� ��� ��������� ���������� ����

������ �� ���������
----ii

 Waiting time (WT) =TAT-burst time (BT) i.e.

WT=TAT-BT-----iii

Average waiting time

 (AWT)=
��� �� ��� ��������� ������� ����

������ �� ���������
-----iv

ATAT % increment=
(��������������������� ����������)∗���

�� (����)����������
--v

AWT % increment=
(��������������������� ����������)∗���

�� (���)����������
---vi

NCS % increment=
(��������������������� ����������)∗���

�� (���)����������
--vii

In order to bring the performance metrics and the

considered algorithms performance to bare, even before the

simulation, the following example of randomly generated

processes in table 1.00 were considered.

Table 4.0: Randomly generated processes

Process burst time Arrival Time

P1 12 0

P2 10 0

P3 24 0

P4 16 0

P5 9 0

Since DABRR demands sorting of processes in ascending

order and table 1.1 handles that as shown below

Table 1.1: Processes Sorted in ascending order of burst time

Process burst time Arrival Time

P5 9 0

P2 10 0

P1 12 0

P4 16 0

P3 24 0

 Algorithm RR, DTSRR and RMRR implements table 1.0

since they executes in FCFS while DABRR executes table 1.1

since it has to sort the ready processes in ascending order of

burst times.

 P1 P2 P3 P4 P5 P1 P2

0 5 10 15 20 25 30 35

P3 P4 P5 P1 P3 P4 P3

 40 45 49 51 56 61 66

P4 P3

 67 71

Figure 1.0: RR Gantt Chart

ATAT=
(����)� (����)� (����)� (����)� (����)

�
=54.6

AWT=
(�����)� (�����)� (�����)� (�����)� (����)

�
=40.4

NCS=15

P5 P2 P1 P4 P3 P4 P3

0 9 19 31 45 59 61 71

Figure 1.1: DABRR Gantt Chart

ATAT=
(���)� (����)� ����)� (����)� (����)

�
= 38.2

AWT=
(���)� (�����)� (�����)� (�����)� (�����)

�
= 24

NCS = 6

P1 P2 P3 P4 P5 P1

0 5 10 15 20 25 32

P2 P3 P4 P5 P3 P4 P3

 37 47 57 61 66 67 71

Figure 1.2: DTSRR Gantt Chart

ATAT=
(����)� (����)� (����)� (����)� (����)

�
=53.6

AWT=
(�����)� (�����)� (�����)� (�����)� (����)

�
 =39.4

NCS=12

P1 P2 P3 P4 P5 P1 P2

0 2 4 6 8 10 20 28

1496

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

P3 P4 P5 P3 P4

 40 52 59 69 71

Figure 1.3: RMRR Gantt Chart

TQ=2.12

ATAT=
(����)� (����)� (����)� (����)� (����)

�
=49.4

AWT=
(�����)� (�����)� (�����)� (�����)� (����)

�
=35.2

NCS= 11

Table 1.2: Performance Metrics of considered algorithms

METRICS RR DABRR DTSRR RMRR

TQ 5 14 5,10,5 2,12

ATAT 54.6 38.2 53.6 49.4

AWT 40.4 24 39.4 35.2

NCS 15 6 12 11

The above table 1.2 showed that DABRR designed in 2015

outperform DTSRR and RMRR of 2016 with respect to all

the considered measuring metrics.

DABRR ATAT increment=
(��.����.�)∗���

��.�
=30.03%

DABRR AWT increment=
(��.����)∗���

��.�
=40.59%

DABRR NCS increment=
(����)∗���

��
=60%

DTSRR ATAT increment=
(��.����.�)∗���

��.�
=1.83%

DTSRR AWT increment=
(��.����.�)∗���

��.�
=2.48%

DTSRR NCS increment=
(�����)∗���

��
=20%

RMRR ATAT increment=
(��.����.�)∗���

��.�
=9.52

RMRR AWT increment=
(��.����.�)∗���

��.�
=12.87%

RMRR NCS increment=
(�����)∗���

��
=26.67%

Table 1.3: Performance Analysis improvement of

DABRR,DTSRR and RMRR

Metrics RR DABRR DTSRR RMRR

ATAT 0.00% 30.03% 1.83% 9.52%

AWT 0.00% 40.59% 2.48% 12.87%

NCS 0.00% 60% 20% 26.67%

3. PROCESS GENERATION AND METRICS

Processes were generated based on the activity case with

respect to activity algorithm big oh analysis orders. N

represents the size of the activity to be performed shown in

table 1.4 below

Table 1.4: Process generation means.

Process

activity type

Activity case

 Best case Average

case

Worst

case

Linear

search

O(1) O(N) O(N)

Binary

search

O(1) O(logN) O(logN)

Burble sort O(N) O(N�) O(N�)

Selection

sort

O(N�) O(N�) O(N�)

Insertion

sort

O(N) O(N�) O(N�)

Merge sort O(NlogN) O(NlogN) O(NlogN)

Quick sort O(NlogN) O(NlogN) O(N�)

Heap sort O(NlogN) O(NlogN) O(NlogN)

4. PROCESS SIMULATION AND METRICS

Figure 1.4 below shows the Algorithm metrics for 100

processes executed. Burst times are generated with

algorithm size 100 to 600. Meaning a process can have a

maximum burst time of 6002=360000ms e.g. take the worst

case or average case of burble sort, selection sort and

insertion sort with O(N2) where .DTSRR and RR use

TQ=250 and performance metrics as displayed in figure1.4

below.

Figure: 1.4: Metrics for 100 generated and computed

processes

5. COMPARATIVE PERFORMANCE

The table 1.5 below was a summary of metrics performance

with respect to average turnaround time derived from

1497

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

100,200, 300 and 400 processes generated and executed by

RR, DABRR, DTSRR and RMRR used in obtaining figure

1.5 below. The table showed that DABRR performs better

than RMRR since it has minimum figure in comparison to

others, followed by RMRR and DTSRR.

Table 1.5: Comparative performance of algorithms’ ATAT

Processes

generated

RR DABRR DTSRR RMRR

100 768101.6 182583.9 688700.9 648534.6

200 3272768 2624847 2932548 2856717

300 4253538 2997054 3858134 3694014

400 5131502 2687891 5000770 4515120

The figure 1.5 presents the graph of the data contained in

table 1.5 clearly showing that DABRR had optimal ATA in

comparison to DTSRR and RMRR as can also be seen in the

table1.5 above.

Figure 1.5 : Comparative performance of algorithms’ ATAT

The table 1.6 below was a summary of simulated metric

performance with respect to AWT derived from 100,200,

300 and 400 processes generated and executed by RR,

DABRR, DTSRR and RMRR used in obtaining figure 1.6.

The AWT table1.6 clearly showed that DABRR perform

better than RMRR and DTSRR since it has minimum figure

in comparison to all followed by RMRR and DTSRR

TABLE 1.6 : Comparative performance of algorithms’ AWT

Pro.

Gen.

RR DABRR DTSRR RMRR

100 729281.64 153643.64 659760.71 61959.41

200 3228954.58 2580890.25 2888591.08 2812759.98

300 4211254.38 2954618.19 3815698.38 3651578.16

400 5090820.82 2647022.96 4959901.82 4474252.39

The figure 1.6 presents the graph of the data contained in

table 1.6 clearly showing that DABRR had optimal AWT in

comparison to DTSRR and RMRR as can also be seen in the

table 1.6 above.

Figure 1.6 : Comparative performance of algorithms’ AWT

The table 1.7 below was a summary of metrics performance

with respect to NCS derived from 100,200, 300 and 400,

processes generated and executed by RR, DABRR, DTSRR

and RMRR used in obtaining figure 1.7. The NCS table1.6

clearly showed that DABRR perform better than DTSRR

and RMRR since it has minimum figure in comparison to

all followed by RMRR and DTSRR.

Table 1.7 : Comparative performance of algorithms’ NCS

NUMBER OF

PROCESSES

RR DABRR DTSRR RMRR

100 11627 179 937 279

200 29408 356 2632 556

300 36542 534 2848 834

400 41080 720 9764 1120

The figure 1.7 presents the graph of the data contained in

table 1.7 clearly showing that DABRR had optimal NCS in

comparison to DTSRR and RMRR as can also be seen in the

table 1.7 above.

0

2000000

4000000

6000000

100 200 300 400

TU
R

N
A

R
O

U
N

D
 T

IM
E

NUMBER OF PROCESSES

RR

DABRR

DTSRR

RMRR

0

1000000

2000000

3000000

4000000

5000000

6000000

100 200 300 400

A
ve

ra
ge

 w
ai

ti
n

g
ti

m
e

Number of processes

RR

DABRR

DTSRR

RMRR

1498

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Figure1.7: Comparative performance of algorithms’

Number of Context Switch (NCS)

6. ANALYZED COMPARATIVE PERFORMANCE

The table 1.8 below was a summary of Comparative

Performance Result Analyzed with respect to AWT ATAT

and NCS derived from table 1.5, 1.6 and 1.7.the table

evidently showed that DABRR improved RR by 37.13%,

36.75% and 98.49%, DTSRR improved RR by 7.06%, 7.04%

and 86.36% while RMRR improved RR by 17.04%, 12.75%

and 97.65% and each with respect to AWT, ATAT and NCS

respectively.

Table 1.8: Analyzed performance percentage improvement

over RR

Metric RR DABRR DTSRR RMRR
AWT Grant

Total

13260311 8336175 12323952 11000550

%

impro

ved

0.00% 37.13% 7.06% 17.04%

ATAT Grant

Total

13425909 8492376 12480153 11714386

%

impro

ve

0.00% 36.75% 7.04% 12.75%

NCS Grant

total

118657 1789 16181 2789

%

impro

ve

0.00% 98.49% 86.36% 97.65%

The figure 1.8 below presents the graph of the data

contained in table 1.8 clearly showing that DABRR had

optimal AWT, ATAT and NCS in comparison to DTSRR

and RMRR as can also be seen in the table 1.8 above.

Figure 1.8: AWT, ATAT and NCS Analyzed performances

of algorithms

7. DISCUSSION OF RESULTS

Observation from data presented in table 1.5, 1.6 and 1.7

represented figure 1.5, 1.6 and 1.7 respectively showed that

DABRR performed better than RMRR and RMRR better

than DTSRR in agreement to presentations format of: [11] in

their table 2, graph 1, graph 2 and graph 4, [14] in their

table 13 and 14, figure 4 and 5, [15] in their table 2, 4 and 6,

figure 3, 4 and 5.

The analyzed result showed that DABRR is the most

optimal of all with respect to all the considered metrics. It

evidently improved RR by 37.13%, 36.04% and 98.49% as

shown in table 1.8 and figure 1.8 in this paper which agreed

with the result of [14] that DABRR improved AWT and

ATAT of RR by 41.23% and 30.70% respectively. The little

variation could be due to the differences in TQ selection

and nature of burst times generated. The same table 1.8 and

figure 1.8 showed that RMRR improved AWT, ATAT and

NCS of RR by 17. 04%, 12.75% and 97.65% respectively

confirmed by the research of [11] which when equation v,

vi and vii are applied on the data in their table 2 indicates

21.93%, 16.99% and 66.67% performance improvement on

RR with respect to AWT,ATAT and NCS respectively. The

difference of the 4% could be attributed to the nature of

processes generation and range in their burst times. Still the

table 1.8 and figure 1.8 showed that DTSRR improves AWT,

ATAT and NCS performance of RR by 7.06%, 7.04% and

86.365 respectively conforming with the result of [15] when

equation v, vi and vii are applied to their table 2 which

indicates 9.02 and 6.70% their table 4 indicates 12.84% and

9.85% while their table 6 indicates 8.14% and 4.08%

performance improvement on AWT and ATAT respectively

and respectively as contained in their research.

0

10000

20000

30000

40000

50000

100 200 300 400

C
O

N
TE

X
T

SW
IT

C
H

NUMBER OF PROCESSES

RR

DABRR

DTSRR

RMRR 37.13%

7.06%
17.04%

36.75%

7.04% 12.75%
0.00%

98.49%
86.36%

97.65%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

RR DABRR DTSRR RMRR

AWT

ATAT

NCS

1499

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

The little variation in the result of this paper and those of

the reviewed counts on number of processes and their sizes

as can be seen that RMRR used 7 processes with highest

burst time 58 in [11], DTSRR separately used 5, 5 and 4

processes with highest burst time 77, 74 and 85 respectively

in [15] while this paper used 1000 processes with the

highest burst of 360,000.

This then showed that DABRR tops RMRR and DTSRR in

the performance ladder in addition to the list it

outperformed in [14] namely DQRRR, IRRVQ, SARR, RP-5,

MRR and ORR that DTSRR tops in [15]. RMRR is second in

the ladder toping just DTSRR and ORR that the DTSRR

tops in [15]. Consequently, DTSRR is the third topping just

ORR it outperformed in [15]

8. SUMMARY OF FINDINGS

The researcher discovered that;

(a). RR will perform better than the improved algorithms

under review when TQ is greater than the average of burst

times. However discourage since large TQ forces RR to

FCFS [20]

(b). The RR outperforms DTSRR if the generated burst time

range is large but not when the generated burst times are

closed.

(c). That not all improved newly proposed algorithms are

more optimal compared to those proposed before them.

This is clearly showed in the case of DTSRR and RMRR of

2016 and DABRR of 2015.

(d) Most researchers do test their proposed algorithms

with few set of data and small size of burst times and then

conclude.

9. CONCLUSION

The researcher hereby concluded that the proposers of new

algorithms should always compare several improved and

proposed existing algorithms before proposing. They

should always compare their proposed algorithms with

other latest proposed algorithms otherwise improvement

cannot be improvement. The proposed algorithm be tested

many set of data in hundreds and with a large burst times

sizes in thousands before conclusion. Thus, by comparing

most latest, the RR improved proposed algorithms can form

a ladder in which the most optimal can be ascertained for

real implementation in operating systems and for optimal

performance.

10. REFERENCES

[1] L. Datta, “Efficient Round Robin Scheduling

Algorithm with Dynamic Time Slice,” International

Journal of Education and Management Engineering,

vol. 02, no. 02, pp 10-19, June 2015,

DOI:105815/ijeme.2015.02.02

[2] N. Goel and B.R. Garg, “A Comparative Study of

PU Scheduling Algorithms,” International journal of

graphics and Image Processing, vol. 02, issue 04, pp

245-25, November 2012

[3] A. R. Dash, S. K. Sahu, S. K. Samantra and S.

Sabat, “Characteristic Specific Prioritized Dynamic

Average Burst Round Robin Scheduling for

Uniprocessor and Multiprocessor Environment”,

International Journal of Computer Science, Engineering

and Applications(IJCSEA), Vol.05, no. 4/5, pp 1-20,

October 2015, DOI : 10.5121/ijcsea.2015.5501

[4] N. Goel and B. R. Garg, “Improvised Optimum

Multilevel Dynamic Round Robin Algorithm for

Optimizing CPU Scheduling,” International Journal

of Computer Applications, Vol. 123, no. 16, pp 1-5,

August 2015, ISSN 0975-8887

[5] H. S. Behera, R. Mohanty, S. Sahu and S. K. Bhoi,

“Comparative Performance Analysis of Multi-

dynamic Time Quantum Round Robin (MDTQRR)

Algorithm With Arrival Time,” Indian Journal of

Computer Science and Engineering (IJCSE),Vol. 02,

no. 02, pp. 262-271, April-May 2011, ISSN 0976-

5166.

[6] A. Bhardwaj and R. Singh, “Comparative Study of

Scheduling Algorithm in Operating Systems”,

International Journal of Computers and Distributed

Systems, vol. 03, no. 01, April-May 2013, ISSN 2278-

5183.

[7] G. S. N. Rao, S. V. N. Srinivasu, N. Srinivasu and

N. O. Raju “An Augmented Dynamic Round

Robin CPU Scheduling Algorithm” International

Journal of Advanced Information in Arts, Science &

Management, vol. 04, no. 04, pp 25-33, April 2015,

ISSN: XXXX-XXXX.

[8] P. Banerjee and L. N. Padhy, “ Comparative

Analysis of Maximum Performance Round

Robin(MPRR) by Dynamic time Quantum with

static Time Quantum”, International Journal of

Advanced Research Computer Science and software

Engineering (IJARCSSE), vol. 04, no. 11, pp 372-377,

November 2014, ISSN 2277-128X.

1500

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

[9] N. Srinivasu, A. S. V Balakrishna and R. D.

Lakshmi, “An Augmented Dynamic Round Robin

CPU Scheduling Algorithm”, Journal of Theoretical

and Applied Information Technology, vol. 76, no. 01,

pp 118-126, June 2015, eISSN 1817-3195/pISSN

1992-8645.

[10] K. M. R. Mahesh, R. B. Renuka, M. Sreenatha and

C. K. Niranjan, “An Improved Approach to

Minimized context Switching in Round Robin

Scheduling algorithm Using Optimization

Techniques”, International Journal of Research in

Engineering Technology (IJRET), vol. 03, issue 04, pp

804-808, April 2014, eISSN 2319-1163/pISSN 2321-

7308.

[11] S. Kathuria , P. P. Singh and P. T. Prashant, “A

Revamped Mean Round Robin (RMRR) CPU

Scheduling Algorithm”, International Journal of

Innovative Research in Computer and Communication

Engineering (IJIRCCE), vol. 04, issue 04, pp 6684-

6691, April 2016, eISSN 2320-9801/pISSN: 2320-

9798.

[12] C. McGuire and J. Lee, “Comparison of Improved

Round Robin Algorithms” Proceedings of the World

Congress on Engineering and Computer Science San

Francisco, USA, vol I , pp 22-24, October 2014,

eISSN: 2078-0966/pISSN: 2078-0958.

[13] R. Joshi and S. B. Tyagi, “Smart Optimized Round

Robin (SORR) CPU Scheduling Algorithm”,

International Journal of Advanced Research in

computer Science and software Engineering, vol. 05,

issue 07, pp 568-574, July 2015, ISSN: 2277 128X

[14] A. R. Dash, S. K. Sahu and S. K. Samantra “ An

Optimized Round Robin CPU Scheduling

Algorithm with Dynamic Time Quantum”,

International Journal of Computer Science, Engineering

and Information Technology (IJCSEIT), vol. 05, no. 01,

February 2015, pp 7-26, Doi:10512/ijcseit.2015.5102

`[15] A Muraleedharan, N. Antony and R. Nandakumar,

“Dynamic Time Slice Round Robin Scheduling

Algorithm with Unknown Burst Time”, Indian

Journal of Science and Technology Vol.9(8), February

2016, pp 1-6, eISSN 0974-5645/ pISSN:0974-6846,

DOI:10.17485/ijst/2016/v9i8/76368

[16] P. Banerjee, T. Zabin, S. Kumai and P. Kumari,

“Comparative Performance Analysis of Best

Performance Round Robin Scheduling Algorithm

(BPRR) Using Dynamic Time Quantum with

Priority Based Round Robin (PBRR) CPU

Scheduling Algorithm in Real Time System”,

International Journal of Electronics and Computer

Science Engineering (IJECSE), vol. 04, no. 02, pp 151-

159, 2012, ISSN: 2277-1956

[17] P. T. Sonagara and V. D. Sanghvi, “A Comparative

Parameters Analysis of Different Round Robin

Scheduling Algorithm Using Dynamic Time

Quantum”, International Journal of Science and

Research (IJSR), vol. 03, no. 12, pp 2025-2047, 2012,

ISSN: 2319-7064

[18] P. Singh, V. Singh and A. Pandy, “Analysis and

Comparison of CPU Scheduling Algorithms”,

International Journal of Emerging Technology and

Advanced Engineering, vol. 04, issue 01, pp. 91-95,

January 2014.

[19] S. Negi and P. Kalra, “A comparative Performance

Analysis of Various Variants of Round Robin

Scheduling Algorithm” International Journal of

information and computation Technology, vol. 04, no.

07, pp 765-772, 2014, ISSN: 0974-2239

[20] S. R. Chavan and P. C.Tikekar “An improved

Multilevel Dynamic Round Robin Scheduling

Algorithm”, International Journal of Scientific and

Engineering Research (ijser), vol. 04, issue 12, pp.

298-301, December 2013, ISSN:2229-5518

1501

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

K I Musa PhD
Department of Information Technology
Department of Management and Information Technology,
Abubakar Tafawa Balewa University, Bauchi, Nigeria,

imkabir@atbu.edu.ng

K E. Lasisi PhD
Department of Mathematics,
 Abubakar Tafawa Balewa University
Bauchi, Nigeria
kazeemlasisi@gmail.com
J. A Gokir
Currently pursuing masters degree in Computer Science,
Department of Mathematics
 Abubakar Tafawa Balewa University
Bauchi, Nigeria.
Email: jgokir@rocketmail.com

1502

IJSER

mailto:imkabir@atbu.edu.ng
mailto:kazeemlasisi@gmail.com
mailto:jgokir@rocketmail.com

